РЕШЕНИЯ ЗАДАНИЙ И УКАЗАНИЯ ДЛЯ ЖЮРИ

2-о (районного) этапа республиканской олимпиады по учебному предмету «Физика»

2021 год

ХІ КЛАСС

ЗАДАЧА 1 «Конус» – 7 баллов Задача 2 «Тестируем вольтметры» – 8 баллов ЗАДАЧА 3 «Лифт» – 10 баллов ЗАДАЧА 4 «Пушка Кулона» – 8 баллов ЗАДАЧА 5 «Процесс» - 12 баллов ИТОГО 45 БАЛЛОВ

ЗАДАЧА 1 «Конус». В закрытом сосуде с жёсткими стенками ёмкостью V=1 л находятся $V_1=0.8$ л воды и сухой воздух при атмосферном давлении p_0 и температуре $t_1 = +30$ ^{o}C . Сосуд представляет собой перевёрнутый основанием вверх конус. Поверх воды налит тонкий слой машинного масла, отделяющий воду от воздуха. Сосуд охлаждают до

температуры $t_2 = -30$ ^{o}C , при этом вся вода замерзает. Плотность воды $\rho_1 = 1 c/c M^3$, плотность льда $\rho_1 = 0.9 c/c M^3$. Определите давление воздуха надо льдом.

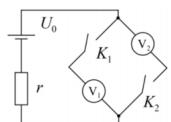
РЕШЕНИЕ. После охлаждения давление воздуха в сосуде изменится, вопервых, из-за понижения его температуры от +30 °C до -30 °C, и, во-вторых, из-за уменьшения занимаемого им объёма от V- V_I до некоторого V' (объём уменьшится вследствие расширения замёрзшей воды). Из закона Клапейрона имеем:

$$\frac{p_0 (V-V_1)}{T_1} = \frac{pV'}{T_2},$$
 2 балла

где через T_1 и T_2 обозначены температуры газа до и после охлаждения, выраженные в градусах Кельвина. Конечный объём газа V' может быть найден из условия равенства масс воды и льда:

$$V' = V - V_{
m Льда} = V - rac{
ho_1}{
ho_2} V_1$$
 1 балл

С учётом последнего соотношения получаем:
$$p=p_0\cdot \frac{T_2}{T_1}\cdot \frac{V-V_1}{V-\frac{\rho_1}{\rho_2}V_1}\approx 1,44\cdot 10^5\Pi a$$


В заключение поясним, для чего в условии сказано, что поверх воды налит тонкий слой машинного масла. Это необходимо для того, чтобы вода не испарялась — в противном случае нам бы пришлось учитывать при расчётах влажность воздуха. 1 балл Решение оформлено аккуратно, с необходимыми комментариями и пояснениями.

1 балл

Всего за задачу 7 баллов

2. ЗАДАЧА 2 «Тестируем вольтметры». Электрическая цепь состоит из

источника напряжения $U_0 = 12~B$, резистора с неизвестным сопротивлением r, вольтметров V_1 и V_2 и ключей K_1 и K_2 . Если замкнут только ключ K_1 , то показание одного из вольтметров равно $U_1 = 6,0~B$. Если замкнут только ключ K_2 , то показание одного из вольтметров равно $U_2 = 8,0~B$. Найдите сумму показаний вольтметров при одновременно замкнутых ключах K_1 и K_2 .

РЕШЕНИЕ. Введём обозначения: R_1 и R_2 — внутренние сопротивления вольтметров V_1 и V_2 соответственно. При замыкании ключа K_1 через вольтметр V_1 потечёт ток $I_1 = \frac{U_0}{r + R_1}$. Следовательно, его показание будет равно $U_1 = I_1 R_1 = \frac{R_1}{r + R_1} U_0$, откуда $R_1 = \frac{U_1}{U_0 - U_1} r = r$ 2 балла

Через вольтметр V_2 ток при этом не течёт.

При замыкании ключа K_2 через вольтметр V_2 потечёт ток $I_2 = \frac{U_0}{r+R_2}$.

Следовательно, его показание будет равно $U_2=I_2R_2=\frac{R_2}{r+R_2}U_0$, откуда $R_2=\frac{U_2}{U_2-U_2}r=2r$ 2 балла

Через вольтметр V_1 ток при этом не течёт.

Если замкнуть одновременно ключи K_1 и K_2 , то суммарный ток через вольтметры будет $I=\frac{U_0}{r+R}$, где $R=\frac{R_1R_2}{R_1+R_2}=\frac{2}{3}r$.

При этом показания каждого из вольтметров окажутся равными $U=IR=rac{R}{r+R}U_0=rac{2}{5}U_0=4,8~\mathrm{B}.$ 1 балл

Таким образом, сумма показаний вольтметров при одновременном замыкании ключей K_1 и K_2 : Σ =2U=9,6 B. *1 балл*

Решение оформлено аккуратно, с необходимыми комментариями и пояснениями.

1 балл

Всего за задачу 8 баллов

ЗАДАЧА 2 «**Лифт».** Тело массой m=10 кг подвешено в лифте при помощи трёх одинаковых лёгких верёвок, натянутых вертикально. Одна из них привязана к потолку лифта, две другие - к полу. Когда лифт неподвижен, натяжение каждой из нижних верёвок составляет $F_0=5$ H. Лифт начинает двигаться с постоянным ускорением, направленным вверх. Найдите установившуюся силу натяжения верхней верёвки при следующих значениях ускорение свободного падения лифта: $a_1=1$ m/c^2 , $a_2=2$ m/c^2 . Ускорение свободного падания равно g=9,8 m/c^2 . Считайте, что сила натяжения верёвки пропорциональна её удлинению.

РЕШЕНИЕ. Когда лифт неподвижен, на тело действуют сила тяжести mg, сила натяжения верхней верёвки F и силы натяжения нижних верёвок F_0 . Из условия равновесия получаем:

$$F=mg+2F_0$$
. 1 балл

При движении лифта с постоянным ускорением a, направленным вверх, в установившемся режиме тело движется с тем же ускорением a. Поэтому силы натяжения верёвок должны измениться. Из второго закона Ньютона:

$$F'$$
- mg - $2F'_0$ = ma 1 балл

где F' и F'_0 - силы натяжения верхней и нижних верёвок.

Для того, чтобы записать ещё одно недостающее для решения задачи уравнение, учтём, что сила натяжения верёвки зависит от её удлинения х следующим образом: при $x \le 0$ сила F = 0, при x > 0 сила F = kx, где k-некоторый коэффициент, одинаковый для всех верёвок, именуемый жесткостью. Отсюда получаем, что при неподвижном лифте удлинения верхней и нижних верёвок x и x_0 связаны соотношением:

$$\frac{x}{F} = \frac{x_0}{F_0} = \frac{1}{k}$$
 1 балл

В лифте, движущемся с направленным вверх ускорением a, верхняя верёвка дополнительно растянется на величину y, а нижние укоротятся на такую же величину. Таким образом, удлинения верёвок будут равны

$$x'=x+y$$
, $x'_0=x_0-y$.

Возможны два случая: $x_0 > 0$ и $x_0 \le 0$.

В первом случае

$$F_0 = kx_0$$
, $F_0 = -ky$, $F_0 - F_0 = -ky$, $F_0 - F_0 = -ky$. 1 балл

Вычитая из соотношения (2) соотношение (1), получаем:

$$F'$$
- F = $ma+2(F'_0-F_0)$

или ma=3ky, то есть $y=\frac{ma}{3k}$. Отсюда сила натяжения верхней верёвки

$$F'=F+ky=mg+2F_0+rac{ma}{3k}$$
 1 балл

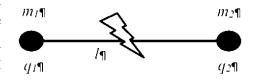
а силы натяжения нижних верёвок

$$F_0' = F_0 - ky = F_0 - \frac{ma}{3}$$
. 1 балл

Указанный случай возможен при F_0 - $\frac{ma}{3k}$ > 0, то есть при $a < 3F_0/m = 1,5m/c^2$. Этому неравенству соответствует заданное в условии задачи ускорение $a_1 = 1 \ m/c^2$. Следовательно, при этом ускорении

$$F'=m(g+\frac{a_1}{3})+2F_0\approx 111\,H.$$
 1 балл

В другом случае (при $x_0 \le 0$), когда $a \ge 3F_0/m = 1.5 \text{м/c}^2$, нижние верёвки не натянуты, то есть $F_0 = 0$, а F = m(g+a). Этот случай реализуется при ускорении лифта $a_2 = 2 \text{ m/c}^2$. При этом ускорении


$$F'=m(g+a_2)=118~H.$$
 2 балла

Решение оформлено аккуратно, с необходимыми комментариями и пояснениями.

1 балл

Всего за задачу 10 баллов

ЗАДАЧА 4 «**Пушка Кулона**». Два небольших заряженных шарика, имеющих электрические заряды q_1 =5 мкКл и q_2 =6 мкКл, массы которых m_1 =50 г и m_2 =70 г соответственно, связаны легкой непроводящей нитью длиной l=50 см.

Нить пережигают. Найдите скорости v_1 и v_2 шариков при их удалении на достаточно большое расстояние друг от друга. Действием сил тяжести и трения пренебречь.

РЕШЕНИЕ. Заряды будут расталкиваться под действием силы Кулона. Энергия их потенциального взаимодействия: $W_{\Pi} = \frac{1}{4\pi\varepsilon_0} = \frac{q_1q_2}{l}(1)$

1 балл

Эта энергия перейдет в кинетическую энергию движения шариков: $\frac{m_1\vartheta_1^2}{2}+\frac{m_2\vartheta_2^2}{2}=W_\Pi$ (2)

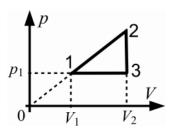
Поскольку шарики взаимодейтсвуют только друг с другом, то будет справедлив закон сохранения импульса (система замкнута):

$$m_1\vartheta_1=m_2\vartheta_2$$
 (3)
 1 балл

Выражая из (3) v_2 и подставляя в (2), получим:

$$\begin{split} \vartheta_2 &= \frac{m_1 \vartheta_1}{m_2}, \\ W_{\Pi} &= \frac{m_1 \vartheta_1^2}{2} + \frac{m_2}{2} \frac{m_1^2 \vartheta_1^2}{m_2^2} = \frac{m_1 \vartheta_1^2}{2} \frac{m_1 + m_2}{m_2} \quad \Rightarrow \quad \end{split}$$

$$\Rightarrow \vartheta_1^2 = \frac{2W_\Pi m_2}{m_1(m_1 + m_2)} \qquad \Rightarrow \quad \vartheta_1 = \sqrt{\frac{2m_2}{m_1(m_1 + m_2)} \cdot \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1q_2}{l}} = \sqrt{\frac{m_2q_1q_2}{2\pi\varepsilon_0m_1(m_1 + m_2)l}} = 3,5 \text{ м/c}.$$

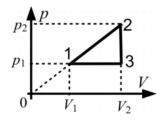

Соответственно

$$\vartheta_2 = \frac{m_1}{m_2} \vartheta_1 = \sqrt{\frac{m_2 q_1 q_2}{2\pi \varepsilon_0 m_1 (m_1 + m_2) l}} = 2,5 \frac{M}{c}.$$
 1 балл

Решение оформлено аккуратно, с необходимыми комментариями и пояснениями. **1 балл**

Всего за задачу 8 баллов

ЗАДАЧА 5 «**Процесс».** Идеальный газ участвует в процессе 1-2-3-1, представленном на диаграмме p(V), (см. рис.). Прямая 1-2 проходит через начало координат. Значения p_1 , V_1 и V_2 даны. В ходе процесса количество вещества газа менялось пропорционально его абсолютной температуре T, т.е. по закону v(T)=zT, где z-известный коэффициент. Изобразите процесс 1-2-3-1



на диаграмме V(T). Не забудьте найти и подписать на диаграмме объем и температуру газа в точках 1, 2, 3.

РЕШЕНИЕ. По условию задачи в процессе 1-2-3-1 выполняется уравнение Клайперона-Менделеева pV=vRT, где v=zT. Иными словами, уравнение Клайперона-Менделеева принимает вид $pV=zRT^2$ (1)

1 балл

Рассмотрим процесс 1-2. Так как точки 1 и 2 лежат на одной прямой, проходящей через начало координат, все они удовлетворяют условию $p=\alpha V$, где коэффициент пропорциональности α , а также неизвестное давление p_2 легко найти: $\alpha=\frac{p_1}{V_1}=\frac{p_2}{V_2},\,p_2=\frac{p_1V_2}{V_1}$ 1 балл

Так как давления во всех пронумерованных точках нам теперь известны, температуры в них легко найти с помощью (1):

$$T(V) = \sqrt{\frac{pV}{zR}}, \quad \Rightarrow \quad T_1 = \sqrt{\frac{p_1V_1}{zR}}, \quad T_2 = \sqrt{\frac{p_2V_2}{zR}} = \sqrt{\frac{p_1V_2^2}{V_1zR}}, \quad T_3 = \sqrt{\frac{p_1V_2}{zR}}.$$

2 балла

Процесс 1-2 — это множество точек (p,V,T), одновременно удовлетворяющих условиям

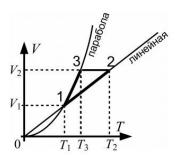
$$p = \alpha V, \qquad pV = zRT^2, \qquad V \in [V_1, V_2].$$

Поскольку нам необходимо построить расположение этих точек на плоскости V(T), исключим из этой системы уравнений давление:

$$\alpha V^2 = zRT^2 \qquad \Leftrightarrow \qquad V = T\sqrt{\frac{zR}{\alpha}}.$$

В последнем равенстве, извлекая корень, мы учли, что и объем и температура — положительные по определению величины. Итак, мы получили, что в процессе 1-2 объем пропорционален температуре с известным коэффициентом пропорциональности. *2 балла*

Процесс 1-3 — это множество точек (p,V,T), одновременно удовлетворяющих условиям


$$p=p_1, \qquad pV=zRT^2 \qquad V \in [V_1,V_2].$$

Также исключим из этой системы уравнений давление:

$$p_1V = zRT^2$$
 \Leftrightarrow $V = \frac{zRT^2}{p_1}.$

Значит, в процессе 1-3 объем пропорционален квадрату температуры, то есть точки этого процесса лежат на параболе, проходящей через начало координат. *2 балла*

Изобразим прямую пропорциональность V(T) в процессе 1-2 и квадратичную зависимость в процессе 1-3:

Учтем, что эти графики "работают" при $V \in [V_1, V_2]$ (эти интервалы прямой и параболы мы выделили на рисунке жирным). Осталось только дополнить диаграмму горизонтальным отрезком 2-3, на котором по условию объем не меняется.

1 балл

Решение оформлено аккуратно, с необходимыми комментариями и пояснениями

1 балл

Всего за задачу 12 баллов